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Abstract. In this paper, the robust identification problem is formulated in the framework of optim-
ization with few violated constraints and an efficient numerical algorithm is presented with a low
complexity. Moreover, it is shown that the proposed method requires minimum a priori information
and is convergent in the presence of outliers.
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1. Introduction

In parameter identification, it is well known that a single or few highly disturbed
values of the measurement data, referred to as the outliers, have a substantial in-
fluence on the estimates. Thus, it is necessary to protect the estimates from these
bad data. There is a large amount of research work along this direction, see the
excellent books [4, 10, 12] and, in particular, their applications to system iden-
tification [7, 14]. The easiest way to improve the robustness of the estimates is
probably to adopt a robust cost function, e.g., by using l1 norm instead of l2 norm
because absolute deviations rather than squared ones are less sensitive to outliers.
The M-estimator is another example in this direction [12]. Unfortunately, those
simple remedies do not solve the problem in most cases. To this end, a minmax
distribution approach to robust identification was initiated in [5] and summarized
in [6]. The idea is to find a minimax distribution in terms of minimum sensitivity in
the given class of distributions. This approach is especially useful for some optimal
estimators such as Bayes and Maximum Likelihood estimators. Because of high
sensitivity to deviations of the distributions, however, these optimal estimators may
cease to work and become unstable in the presence of outliers. Influence statistics
is also applied to rank and identify outliers. The most popular one is probably the
Cook’s distance [4, 10] for identifying how influential a particular observation is
based on the least squares estimates. However, the method seems to be limited
and is not automatic requiring good judgment by the designer. In addition to the
computational complexity, it can be ineffective if two or more outliers are close.
Another approach is to treat outliers as abrupt changes of the signal [1]. Then, the
problem reduces to detecting these changes. The basic idea is multiple hypotheses
testing. A model or several models are constructed based on a priori statistical
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information. Hypotheses testing are performed after receiving input-output meas-
urements. This approach also needs extensively a priori statistical information.
There are also several practical ways to robustify the estimates in the presence
of outliers [7, 14]. For instance, the changes due to outliers can be drastic in the
data record especially in the residual plot and thus outliers may be picked up by
eye inspection of the residual plot. Though these practical ways require much less
a priori knowledge, they need human interaction and hence reduce the efficiency of
the estimates. Further, these practical ways have less theoretical foundations and
may not work in some cases. For example, as pointed out on p. 75 of [12], the
residuals from the least squares can not be used for picking up outliers because
outliers can possess very small least squares residuals as the least squares fit is
pulled too much in the direction of these deviating points.

There exists a conceptually effective way to deal with the outliers. Suppose we
have n measurements within which a small number k are outliers. To detect such k

outliers, we may calculate an estimate by deleting k observations from n measure-
ments. There are n!/(n− k)!k! such combinations. After trying all n!/(n− k)!k!
combinations, we have the ‘best’ estimate and the corresponding k measurements
are likely to be the outliers. This method is intuitively simply and effective. How-
ever, the computational complexity is exponential (combinatorial) in n, the total
number of data points and hence is infeasible in a practical setting.

In this paper, we propose a new approach to deal with outliers: optimization with
few violated constraints approach. Contrary to existing estimators, the proposed
approach assumes a minimum amount of a priori statistical information on the
noises, has a lower computational complexity and does not need human interaction.
If the upper bound k(n) on the number of ourliers out of n measurements is known,
our scheme guarantees convergence with probability one in the presence of outliers.
The computational complexity of our algorithm is bounded by

min{O(n · km+2),O(n · (m+ 2)k+1)},

where m is the number of unknown parameters. This complexity is comparable
to O(n) for small m, k << n. The work reported in this paper is a continuation
of our previous work [2] where an algorithm for optimization with few violated
constraints was developed, analyzed and applied to identification in the setting of
membership set identification. In this paper, we will apply the algorithm developed
in [2] to stochastic identification. Because noise assumptions in the setting of mem-
bership set identification are quite different from that in the setting of stochastic
identification, the results reported in this paper are non-trivial extensions of [2].

We end this section by outlining the paper. Section 2 describes the problem and
illustrates the idea of our approach by a simple example. The system description
is provided in Section 3, and Section 4 presents the algorithm to deal with outliers
along with its complexity analysis. Convergence results are obtained in Section 5.
Finally, some remarks are provided in Section 6.
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2. A motivating example and problem statement

To clearly state the problem and to visualize the idea behind the main result of the
paper, we consider a simple example of a scalar static equation

yi = θ + vi, i = 1, 2, . . . , n.

The goal is to estimate the unknown constant θ from the output observations y1, y2,

. . . , yn corrupted by a noise sequence v1, v2, . . . , vn. Let vi’s be independent,
identically distributed and p(vi) be the probability density function of vi . Then,
the Maximum Likelihood Estimate (MLE) is given by

θn = arg min
θ̂

(
−

n∑
i=1

log p(yi − θ̂ )

)
.

Now, further assume that vi is the rectangular distribution in the interval [−a, a]
for some a > 0, i.e.,

p(vi) =
{

1
2a vi ∈ [−a, a]
0 vi �∈ [−a, a] .

Then, the MLE θn can be played by any θ̂ satisfying inequalities

−a � yi − θ̂ � a, i = 1, 2, . . . , n

which can be obtained by [11]

θn = arg min
θ̂

max
1�i�n

|yi − θ̂ |

= arg min
θ̂

max

{
| max

1�i�n
yi − θ̂ |, | min

1�i�n
yi − θ̂ |

}
= 1

2

(
max

1�i�n
yi + min

1�i�n
yi

)

= θ + 1

2

(
max

1�i�n
vi + min

1�i�n
vi

)
. (2.1)

It can be verified that θn → θ with probability one as n → ∞. If, however,
the noise distribution is approximately rectangular with some very small but non-
zero tails outside the interval [−a, a] or due to some fault we had a few bad
measurements of yi , the MLE estimate θn of (2.1) becomes unstable because it
responds strongly to outliers. For instance, let vi∗ = 3a be a single outlier at some
1 � i∗ � n, the MLE estimate of (2.1) becomes

θn→ θ + 1

2
(3a − a) = θ + a.

We see that a single outlier changes the estimate completely, independent of n.
To reduce the effect of the outliers, let us take a closer look at the estimate (2.1).

Let the set In = [1, 2, . . . , n] and the set In/1 denote the collection of all subsets
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of In with (n − 1) elements. Further, let s ⊂ In/1 be any subset of In/1 that does
not contain i∗ and s∗ ⊂ In/1 be any subset of In/1 that does contain i∗. It can be
easily verified that for any n � 2

min
θ̂

max
i∈s⊂In/1

|yi − θ̂ | � max
i∈s⊂In/1

|yi − θ | � a � min
θ̂

max
i∈s∗⊂In/1

|yi − θ̂ |.

In other words, if we know that there is an outlier at some unknown i∗, by modify-
ing the estimate (2.1) as

θn = arg min
θ̂

min
s̄∈In/1

max
i∈s̄
|yi − θ̂ | (2.2)

any subset s∗ ⊂ In/1 containing i∗ can be identified and eliminated. In turn, the
effects of the outliers can be removed. In fact, if there is indeed only one outlier, it
is intuitively clear that the estimate given by (2.2) satisfying

θn→ θ

with probability one as n → ∞. This is the basic idea behind our main results:
to find a θ̂ and a subset s̄ ⊂ In/1 such that maxi∈s̄ |yi − θ̂ | is minimized. The
intuition is that maxi∈s̄ |yi − θ̂ | is large if some of outliers are present in the set s̄
and is small if no outlier is present. Therefore, by looking for a subset in In/1 and
a θ̂ that minimize maxi∈s̄ |yi − θ̂ | effectively removes outliers from measurement
data. In the next section, we will extend this simple idea to a very general setting
of identification for unknown numbers of outliers. Moreover, the noise sequence is
no longer assumed to be i.i.d. but the output of some unknown linear system driven
by white noise.

3. System description

Consider a stable single input-single output discrete time system

yi = φ̄T
i θ̄ + v̄i , i = 1, 2, . . . , n (3.1)

where yi ∈ R is the output, θ̄ ∈ Rm the unknown parameter vector to be identified
and φ̄i ∈ Rm the deterministic and measurable regressor. The noise

v̄i = v̄
g

i + v̄b
i =

N−1∑
k=0

αkηi−k + v̄b
i ∈ R (3.2)

consists of two parts v̄
g

i and v̄b
i . The part v̄b

i represents the bad measurement data or
the outliers. It is assumed that v̄b

i can be non-zero at any time with any magnitude.
However, the number of times that v̄b

i is non-zero is upper bounded by a small
number

k(n) < n. (3.3)
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This upper bound k reflects the fact that outliers can happen at any time with a
large magnitude, but they do not occur frequently.

The ‘normal’ part of the noise is denoted by v̄
g

i that is the output of some
unknown linear time invariant system v̄

g

i =
∑N−1

k=0 αkηi−k driven by a white noise
ηi . The linear system part is represented by a FIR model with unknown impulse
response αk. For not trivializing the problem, we assume that not all αk = 0,
otherwise v̄

g

i ≡ 0. The order N − 1 of the FIR model is also unknown and can
be arbitrarily large but fixed. No minimum phase assumption is assumed on this
FIR system. The white noise ηi is an independent, identically distributed bounded
random sequence in the interval

ηi ∈ [a, ā]
for some unknown −∞ < a < ā <∞. Again for not trivializing the problem, we
assume that a < ā. Otherwise, a = ā implies that ηi has a delta distribution which
means ηi is a constant with probability one. The support interval [a, ā] does not
necessarily contain the origin but is assumed to be tight in the sense that for any
arbitrarily small ρ > 0,

Prob{a � ηi � a + ρ} � p1(ρ) > 0 (3.4)

and

Prob{ā − ρ � ηi � ā} � p1(ρ) > 0 (3.5)

for all i ∈ [1, 2, . . . , n] and some p1(ρ) > 0. Note that this tightness assumption
does not add any restriction to the unknown bounds a and ā at all. If [a, ā] is not
tight, then there always exists some [a′, ā′] ⊂ [a, ā] such that [a′, ā′] is tight.

The system (3.1) represents a large class of discrete time systems. For instance,
FIR systems as well as IIR systems modeled by some bases like Laguerre and/or
Kautz functions. Also, the assumed setups of v̄

g

i and v̄b
i allow a large class of

noises including those with unbounded supports. For instance, consider a Gaus-
sian distribution on ηi with unknown mean value µ and variance σ 2. Set [a, ā] =
[µ−3σ,µ+3σ ]. Then, the probability of ηi �∈ [µ−3σ,µ+3σ ] is very small and ac-
cordingly the effects of ηi outside [a, ā] can be considered as outliers summarized
in the part of v̄b

i .
For the system (3.1) and a given measurement data yi and φ̄i i = 1, 2, . . . , n,

define the augmented system

yi = φ̄T
i θ̄ + v̄i = (φ̄T

i , 1)

(
θ̄

θ̄m+1

)
+ v̄i − θ̄m+1

= φT
i θ + vi, i = 1, 2, . . . , n

(3.6)

with

θ̄m+1 = 1

2

(
N−1∑

0

max{αja, αj ā} +
N−1∑

0

min{αja, αj ā}
)
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and

φT
i = (φ̄T

i , 1), θT = (θ̄T , θ̄m+1), vi = v̄i − θ̄m+1.

Note that θ̄m+1 is unknown and will be determined later by the identification al-
gorithm. yi and φi on the other hand are available.

For a given data observation points i ∈ In = [1, 2, . . . , n] and the upper bound
k(n) on the outliers, let the set

In/k(n) = {[i1, i2, . . . , in−k] ; ij ∈ [1, 2, . . . , n], ij �= il if j �= l} (3.7)

denote the collections of the subsets of [1, 2, . . . , n] with n − k distinct elements.
Now consider an optimization problem: Consider the augmented system (3.6), to
find a triplet ε̂∗(n), θ̂∗(n) and a subset [i∗1 , i∗2 , . . . , i∗n−k] ∈ In/k(n) such that the
triplet solves the following minimization problem

min
[i1,... ,in−k]⊂In/k(n)

min ε̂(n)

subject to − ε̂(n) � yi − φT
i θ̂ (n) � ε̂(n), i ∈ [i1, . . . , in−k].

(3.8)

Denote the solution θ̂∗(n) by

θ̂∗(n) =




θ̂∗1 (n)
...

θ̂∗m(n)
θ̂∗m+1(n)


 .

The meaning of the above minimization is to find a θ̂ and the subset [i1, . . . , in−k] ⊂
In/k(n) such that maxi∈[i1,... ,in−k ] |yi − φT

i θ̂ | is minimized. The intuition is again
that maxi∈[i1,... ,in−k] |yi − φT

i θ̂ | is large if some of outliers v̄b
i ’s are present in the

set [i1, . . . , in−k] and is small if no outlier is present. Therefore, by looking for
a subset in In/k(n) and a θ̂ that minimize maxi∈[i1,... ,in−k ] |yi − φT

i θ̂ | effectively
removes outliers from measurement data.

4. Algorithm and Complexity Analysis

From the previous discussion, we see that the proposed robust identification scheme
is basically to solve the optimization problem of (3.8). This can be done in the
framework of LP-type optimization developed in [8] and further discussed in [2].

Consider the system (3.6). For a given input-output measurements yi, φi , i =
1, 2, . . . , n, define

xT = (x1, ..., xm+1, xm+2) = (θ̂T , θ̂m+2),

and

{hi} = {x ∈ Rm+2 : −xm+2 � yi − φT
i θ̂ � xm+2}.
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Let H be the constraint set

H = {h1, h2, . . . , hn}
and w(G) denote the lexicographically smallest point x ∈ Rm+2 that satisfies all
the constraints in G ⊆ H . Here, the lexicographically smallest point means that the
last coordinate is the most important. In other words, let x = (x1, ..., xm+2)

T , y =
(y1, ..., ym+2)

T be any two points in Rm+2. Then, x is lexicographically smaller
than y, or x < y if and only if

xj < yj for some j � m+ 2

and

xk = yk for all k such that j < k � m+ 2.

Note that whether xi < yi or xi > yi for i < j is irrelevant.
We now introduce a few definitions.

DEFINITION 4.1. A subset B ⊆ H is called a basis if w(G) < w(B) for all
proper subsets G ⊂ B. A basis for a subset G ⊆ H , denoted by B(G), is a basis
B ⊆ G with w(B) = w(G).

DEFINITION 4.2. We say that a constraint h ∈ H violates a set G if w(G+h) >

w(G). For G ⊆ H , we denote by V (G) all the constraints of H violating G.

DEFINITION 4.3. Let G ⊆ H , then the level of G is defined as |V (G)|, i.e., the
number of constraints violating G.

DEFINITION 4.4. The optimization problem (3.8) is non-degenerate if w(B) �=
w(B ′) for any two distinct bases B and B ′ in H.

Clearly, for a given k < n, the optimization problem of (3.8) is equivalent to finding
a basis G and the corresponding w(G) that satisfies all n but at most k constraints
and is the minimum. We denote by Bk the set of all bases in H of level k, i.e.,
the collection of all the bases representing the sets of level k, and B�k for the
set of bases of level at most k. What we need to find is a basis with the smallest
value among all bases of level at most k. A trivial way to solve this problem is to
find the minimum value for each collection of n − k constraints. However, there
are n!/k!(n− k)! possible combinations and thus the computational complexity is
high. The way we propose is to search all the bases of level k in an efficient way
discussed in [2] and then to select the one with the minimum value.

4.1. ALGORITHM FOR SOLVING THE OPTIMIZATION PROBLEM (3.8)

Let (H,w) be non-degenerate. Given n = |H | and k � 0, to find a basis in H that
has the minimum value w and satisfies all n but at most 0 � k � n constraints.
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Step 1. Determine the unique basis B0 = B(H) and set j = 1.
Step 2. For each Bj−1, determine all its neighbors in Bj by finding the basis of

H − V (B) − h for every basis B ∈ Bj−1 and each h ∈ B. Check if
the achieved basis B(H − V (B) − h) coincides with any basis obtained
before. If it is, then it is redundant and we remove it from the search path.
Also, check if V (B ′) = V (B)

⋃{h}, i.e., if the obtained is in Bj . If the
basis obtained is not redundant, go to Step 3.

Step 3. If j = k, go to Step 4. Otherwise, set j = j + 1 and go to Step 2.
Step 4. Find the basis with the smallest value of w among all B�k.

We remark that at each step of the algorithm, one needs to find a basis which has
the minimum value of w. Finding a basis with the minimum w is exactly a linear
programming problem. For instance, at level k = 0, finding a basis for H is to
find a set of (m + 2) constraints {−xm+2 � yi − φi θ̂ � xm+2}, i = i1, ..., im+2

which intersect at a point that has the lexicographically smallest value. These
(m + 2) constraints constitute a basis for H . Or equivalently, finding a basis for
H at k = 0 is to find a minimal ε̂ > 0 and the corresponding θ̂ so that all n

constraints {−ε̂ � yi−φi θ̂ � ε̂} are satisfied. This is clearly a linear programming
problem. Denote such a basis by B(H) = {b1, ..., bm+1}, with bi ∈ H . Next,
we can calculate the bases at k = 1 level, i.e., find bases for H − V (B) − bi),
i = 1, 2, ..., m + 2, where V (B) are the constraints in H violating B(H). This is
again a linear programming problem. In this sense, the algorithm requires to apply
linear programming algorithms repeatedly for each level k. We notice that com-
putational complexity of a linear programming problem is, in general, polynomial
in n. In our setting, however, the dimension of x is fixed and this implies that the
computational complexity of each linear programming is linearly bounded by the
number of constraints n. This is one reason why we can achieve a low complexity
stated in the following theorem.

THEOREM 4.1. Let the problem (H,w) be non-degenerate. Then, the optimiz-
ation problem of (3.8) can be solved by the above algorithm in O(n) time for
0 � k � 1 and in min{O(nkm+2),O(n(m+ 2)k+1)} time for any k � 2.

Proof. The proof is similar to what provided in [2] and thus is omitted.

The result of Theorem 4.1 shows that the proposed algorithm is very efficient for
small m, k << n. This is the case when the number of outliers is bounded by a
small k. Note that in identification n can be very large and m is the dimension of
the parameter to be identified and small.

We now consider a numerical example from [9]

y(z) = 0.51
z−1

1 + 0.8z−1
u(z)+ 0.35

z−1(1− 1.2z−1)

(1+ 0.8z−1)2
u(z)+ v(z)

and

v(z) = (0.6− 0.3z−1 + 0.1z−2)η(z).
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This discrete system is in fact the discretized model of the continuous transfer
function g(s) = 1/(10s+ 1)(s+ 1) sampled with sampling period 1 (second). The
unusual regressors are motivated by the Laguerre polynomials and the pole −0.8
was chosen between the true system poles, see [9] for details. The time domain
model of the above system is given by

yi = φT
i

(
θ1

θ2

)
+ vi = (xi, wi)

(
0.51
0.35

)
+ vi

where

xi = −0.8xi−1 + ui−1, wi = −1.6wi−1 − 0.64wi−2 + ui−1 − 1.2ui−2,

vi = 0.6ηi − 0.3ηi−1 + 0.1ηi−2.

For simulation, n = 600, input ui is a random sequence uniformly in [−1, 1] and
ηi is a random sequence uniformly in [−0.3, 0.7]. Let the maximum number of
outlier be 6 (1% of 600) and the actual number be 5 at

v(50) = 3, v(150) = −4, v(250) = 5, v(450) = −6, v(550) = 7.

The top diagram of Figure 1 shows the estimates θ̂ of (0.51, 0.35)T by allowing re-
moving k = 0, 1, 2, 3, 4, 5, 6 constraints respectively and the bottom one shows the

parameter estimation errors ‖θ̂ −
(

0.51
0.35

)
‖ for k = 0, 1, 2, 3, 4, 5, 6 respectively.

As expected, the parameter estimation errors at k = 5, 6 are almost zero.

5. Convergence results

In this section, we will show that the estimate obtained by the optimization of (3.8)
converges to the true but unknown θ under some conditions. To this end, recall the
definition v̄g. Then, we have

LEMMA 5.1. v̄
g

i is a random variable with the support

[ε, ε̄] =
[

N−1∑
k=0

f
k
,

N−1∑
k=0

f̄k

]
,

where

f̄k = max{αka, αkā}, f
k
= min{αka, αkā}.

Moreover, the support [ε, ε̄] of v̄g

i is tight, i.e., for any arbitrarily small ρ > 0,

Prob{ε � v̄
g

i � ε + ρ} � p2(ρ) > 0

Prob{ε̄ − ρ � v̄
g

i � ε̄} � p2(ρ) > 0

for all i ∈ [1, 2, . . . , n] and some p2(ρ) > 0.
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Figure 1.

Proof. Note that ηi ∈ [a, ā]. This implies

max
i

v̄
g

i = max
i

N−1∑
k=1

αkηi−k �
N−1∑
k=1

f̄k = ε̄

and

min
i

v̄
g

i = min
i

N−1∑
k=1

αkηi−k �
N−1∑
k=1

f
k
= ε.

Now, ηi, . . . , ηi−N+1 are independent and can be arbitrarily close to the bounds a

and ā with non-zero probability. This implies that v̄g

i can be arbitrarily close to the
bounds ε and ε̄ with non-zero probability. In other words, the bound [ε, ε̄] is tight.

LEMMA 5.2. Define v
g

i = v̄
g

i − ε + ε̄/2. Then,
1. With ε = ε̄ − ε/2, vg

i is a random variable with the support [−ε, ε] and moreover
the support [−ε, ε] is tight for each i ∈ [1, 2, . . . , n].

2. v
g

i assumes both positive and negative signs with non-zero probability for each
i ∈ [1, 2, . . . , n].

3. v
g

i and v
g

i+j are independent as long as j � N .
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Proof.

max
i

v
g

i = max
i

v̄
g

i −
ε̄ + ε

2
= ε̄ − ε̄ + ε

2
= ε,

min
i

v
g

i = min
i

v̄
g

i −
ε̄ + ε

2
= ε − ε̄ + ε

2
= −ε.

Moreover, the tightness of the bound [ε, ε̄] on v̄
g

i implies the tightness of the bound
[−ε, ε] on v

g

i . Since −ε < 0 < ε, vg

i obviously assumes both positive and negat-
ive signs with non-zero probability. This completes the proofs of the first and the
second parts. To show (3), notice that

v
g

i = v̄
g

i −
ε + ε̄

2
=

N−1∑
k=0

αkηi−k − ε + ε̄

2
,

v
g

i+j = v̄
g

i+j −
ε + ε̄

2
=

N−1∑
k=0

αkηi+j−k − ε + ε̄

2
.

ηi, . . . , ηi−N+1 and ηi+j , . . . , ηi+jN+1 are independent as long as i+j−N+1 > i

or j � N . Thus, vg

i and v
g

i+j are independent provided j � N .
Now, the system (3.1) can be re-written as

yi = φ̄T
i θ̄ + v̄

g

i + v̄b
i = φ̄T

i θ̄ + v̄
g

i −
ε + ε̄

2
+ ε + ε̄

2
+ v̄b

i

= (φ̄T
i , 1)

(
θ̄

θ̄m+1

)
+ v

g

i + v̄b
i

= φT
i θ + v

g

i + v̄b
i (5.1)

where θ̄m+1 = ε + ε̄/2, but unknown. v
g

i represents the ‘good’ noise part dis-
tributed in the interval [−ε, ε] for some unknown ε > 0 and v̄b

i denotes the
outliers. Note that if v̄b

i were identically zero and ε were known, then the so-called
membership set

,In =
n⋂

i=1

{θ̂ ∈ Rm+1 : − ε � yi − φT
i θ̂ � ε} (5.2)

is the set of all possible parameter estimates that are consistent with the equation
(5.1), the observed input-output data yi , φT

i = (φ̄T
i , 1) and the noise bound ε. The

problem is that ε is unknown and outliers v̄b
i ’s are not identically zero. Moreover,

v
g

i and v
g

j could be dependent. To this end, note In = [1, 2, . . . , n] and define

Jk = [i1, i2, . . . , ik] ⊂ In.

Denote |In| = n and |Jk| = k the number of elements in the sets of In and Jk

respectively. Also, let Ig be the (good) subset of In that v̄b
i = 0 if i ∈ Ig and Ib be
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the (bad) subset of In that v̄b
i �= 0 if i ∈ Ib. Clearly, under the system description

Ig
⋂

Ib = ∅, Ig
⋃

Ib = In

where ∅ indicates the empty set. Furthermore, the maximum occurrence of the
outliers is bounded by k and thus, we have

|Ib| � k, |Ig| � n− k, |Ig| + |Ib| = n.

By removing k (not necessarily bad) points, say Jk = [i1, i2, ..., ik] from In =
[1, 2, . . . , n], what left in the good set is Ig/(Ig

⋂
Jk) and in the bad set is

Ib/(Ib
⋂

Jk). Obviously,

|Ig/(Ig
⋂

Jk)| � n− k − k = n− 2k and |Ib/(Ib
⋂

Jk)| � k.

By using the notation In/k as in (3.7), we obtain

In/Jk ∈ In/k.

For each subset s ⊂ In, the corresponding membership set can be defined

,s =
⋂
i∈s
{θ̂ ∈ Rm+1 : − ε � yi − φT

i θ̂ � ε}. (5.3)

It is important to remark that if (In/Jk)
⋂

Ib = ∅, i.e., none of the outlier happens
in the set In/Jk, ,In/Jk is not empty and at least the true but unknown parameter
vector θ belongs to the set ,In/Jk .

Now for each subset s ⊂ In, define the diameter of the membership set ,s

dia ,s = sup
θ1,θ2∈,s

‖θ1 − θ2‖2.

We now state an assumption before presenting the key lemma.

ASSUMPTION 5.1.
• The regressor φi is persistently exciting, i.e., there exists some α > 0 and

integer l0 > 0 so that

0 < α2I � 1

l0

i0+l0∑
i=i0+1

φiφ
T
i (5.4)

for all i0 � 0.
• Let l = max(N, l0). Then, for large n, the upper bound k(n) on the outlier

satisfies

2k(l + 1) � ξn

for some constant 0 � ξ < 1.
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• The ‘good’ noise v
g

i is tightly bounded in the interval [−ε, ε] for some un-
known ε > 0, i.e., there is a positive probability p(ρ) > 0 such that for any
small enough ρ > 0

Prob{−ε � v
g

i � −ε + ρ} � p(ρ) > 0 (5.5)

and

Prob{ε − ρ � v
g

i � ε} � p(ρ) > 0 (5.6)

for each i ∈ (Ig/Ig
⋂

Jk), where Jk is an arbitrary subset of In containing k

elements.

Assumption (5.4) is the sufficient richness condition on the input. In fact, (5.4)
requires enough spectral context in the input. For details, see [3] and [14].

LEMMA 5.3. Consider the system (5.1) under Assumption 5.1. Then,

dia ,Ig/(Ig∩Jk)→ 0

with probability one as n→∞ and consequently ,Ig/(Ig∩Jk)→ {θ} and ε̂(n)→ ε.
Proof. Note that θ ∈ ,Ig/(Ig∩Jk) for each n and

dia ,Ig/(Ig∩Jk) = sup
θ1,θ2∈,Ig/(Ig∩Jk)

‖θ1 − θ2‖2

� sup
θ1∈,Ig/(Ig∩Jk)

‖θ1 − θ‖2 + sup
θ2∈,Ig/(Ig∩Jk)

‖θ2 − θ‖2

= 2 sup
θ̂∈,Ig/(Ig∩Jk)

‖θ̂ − θ‖2.

To show dia ,Ig/(Ig∩Jk) → 0 with probability one, it suffices to show that for an

arbitrary but fixed θ̂ (n), if θ̂ (n) ∈ ,Ig/(Ig∩Jk), then ‖θ̃ (n)‖ = ‖θ̂ (n)− θ‖ → 0 as
n→∞. Note l = max(N, l0), it follows that

n− 2k(1+ l) � n− ξn→∞, as n→∞.

Hence, for large n, let q be an integer such that

2ql � n− 2k � 2(q + 1)l.

By the hypothesis that φi is persistently exciting, thus within any window [(i −
1)2l + 1, (i − 1)2l + l0], there always exists at least one i0 ∈ [(i − 1)2l + 1, (i −
1)2l + l0] such that

|φT
i0 θ̃ (n)| � α‖θ̃ (n)‖.

Let i0 ∈ [(i−1)2l+1, (i−1)2l+l0], i = 1, 2, . . . , q be a such time sequence. Now,
|Jk| = k(n) for each n, there are at most k windows [(i−1)2l+1, (i−1)2l+l0] that
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overlap with Jk. Therefore, the set Ig/(Ig∩Jk) contains at least q−k windows that
do not overlap with Jk. Let the corresponding time sub-sequence of i0 be denoted
by i0

1 , i
0
2 , . . . , i

0
q−k. Suppose θ̂ (n) ∈ ,Ig/(Ig∩Jk), it follows that at each i0

j ,

ε � |yi0
j
− φT

i0
j

θ̂ (n)| = |φT

i0
j

θ̃ (n)+ v
g

i0
j

+ v̄b

i0
j

|
= |φT

i0
j

θ̃ (n)+ v
g

i0
j

| (5.7)

because i0
j �∈ Ib �⇒ v̄b

i0
j

= 0. Now, from the assumption that vg

i0
j

approaches the

both bounds ε and −ε with a non-zero probability, it follows that with non-zero
probability at each i0

j ,

ε � |φT

i0
j

θ̃ (n)+ v
g

i0
j

| = |φT

i0
j

θ̃ (n)| + |vg

i0
j

| � α‖θ̃ (n)‖ + |vg

i0
j

| (5.8)

and

ε − |vg

i0
j

| > ρ.

In other words, at each i0
j and any small ρ >, there exists a p3(ρ) > 0 such that

Prob

{
‖θ̃ (n)‖ � 1

α
ρ

}
� p3(ρ)

or

Prob

{
‖θ̃ (n)‖ > 1

α
ρ

}
� 1− p3(ρ).

Further vg

i and v
g

j are independent as long as |i − j | � l(� N) and consequently

Prob

{
‖θ̃ (n)‖ > 1

α
ρ

}
� (1− p3(ρ))

q−k.

As 2ql � n− 2k � 2(q + 1)l, we obtain as n→∞

∞← 1

2l
(n− 2k(l + 1)− 2l) = n− 2l − 2k

2l
− 2kl

2l
� q − k.

Clearly, for any ρ > 0,

Prob

{
‖θ̃ (n)‖ > 1

α
ρ

}
→ 0

as n→∞. Furthermore, for each ρ > 0,

q − k � 1

2l
(n− 2k(l + 1))− 1 � 1− ξ

2l
n− 1
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and this implies

(1− p3(ρ))
q−k � 1

1− p3(ρ)

[
(1− p3(ρ))

1−ξ
2l

]n
.

Therefore, for every small ρ > 0

∞∑
n=1

Prob{‖θ̃ (n)‖ > 1

α
ρ} �

∞∑
n=1

1

1− p3(ρ)

[
(1− p3(ρ))

1−ξ
2l

]n
<∞.

This implies by the Borel-Cantelli’s Lemma that with probability one

‖θ̃ (n)‖ → 0

as n→∞. Accordingly,

dia ,Ig/(Ig∩Jk) � 2‖θ̃ (n)‖ → 0

with probability one as n→∞. This completes the proof.

Now, we are in a position to show main convergence result.

THEOREM 5.1. Consider the system (3.1) and its augmented system (3.6) under
Assumption 5.1. Then, the estimate obtained by the optimization with few violated
constraints (3.8) satisfies

θ̂ (n)→ θ

with probability one as n→∞.
Proof.

−ε̂(n) � yi − φT
i θ̂ (n) � ε̂(n)

for all i ∈ In/Jk = (Ig/Ig
⋂

Jk)
⋃

(Ib/Ib
⋂

Jk). Let ε̂g and ε̂b be the minimum
values such that

ε̂g = min
θ̂

max
i∈Ig/Ig⋂ Jk

|yi − φT
i θ̂ |,

and

ε̂b = min
θ̂

max
i∈Ib/Ib⋂ Jk

|yi − φT
i θ̂ |

respectively.
By the key lemma 5.3, ε̂g → ε with probability one as n→∞. Combining the

fact that ε̂g � ε̂(n) � ε, we have that ε̂(n)→ ε with probability one.
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Now, we show that θ̂ (n) → θ . To this end, let ,In/Jk denote the membership
set after removing k constraints, i.e., ,In/Jk = ,g

⋂
,b with

,g =
{
θ̂ : −ε̂(n) � yi − φT

i θ̂ � ε̂(n), i ∈ Ig/Ig
⋂

Jk

}
,

,b =
{
θ̂ : −ε̂(n) � yi − φT

i θ̂ � ε̂(n), i ∈ Ib/Ib
⋂

Jk.
}
.

Since θ̂ (n) ∈ ,In/Jk , we have θ̂ (n) ∈ ,g and θ̂ (n) ∈ ,b. Now from the fact that the
set ,g converges to a singleton {θ} with probability one, it follows that θ̂ (n)→ θ

with probability one. This completes the proof.

6. Concluding remarks

In this paper, an optimization with few violated constraints approach is proposed
to parameter identification in the presence of outliers. The approach requires a
minimum statistical knowledge of the unknown noise and is convergent. It is also
important to note that no minimum phase condition is assumed on the filter which
models the noise. Instead, what is needed for the proposed approach is the availab-
ility of the upper bound k(n) on the number of outliers.

Another point worth mentioning is that the non-degeneracy condition is as-
sumed for the complexity analysis. The non-degeneracy condition is standard in
the linear programming literature. If the original problem is degenerate, the degen-
eracy can be removed by infinitesimal perturbation. The solution to the refinement
problem also solves the original problem. Interested readers can find more details
in [8].
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